
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7441- -97- 8073

Compressed Aeronautical Chart
Access Software

PERRY B. WISCHOW
MAURA C. LOHRENZ

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

July 24, 1998

'jjHOQTK-XT^rrT.^iirrr^ i

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 24, 1998
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Compressed Aeronautical Chart Access Software

5. FUNDING NUMBERS

Job Order No. 574562500

Program Element No. DMA

Project No.

Task No.

Accession No. DN154123

6. AUTHOR(S)

Perry B. Wischow and Maura C. Lohrenz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/7441 -97-8073

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES)

National Imagery and Mapping Agency
8613 Lee Hwy.
Fairfax, VA 22031-2137

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Compressed Aeronautical Chart (CAC) data base is a global library of compressed, scanned, aeronautical
charts that support Navy and Marine Corps aircraft moving-map displays and mission planning systems. The source
for the CAC library is the National Imagery and Mapping Agency (NIMA) standard ARC (equal Arc-second Raster
Chart) Digitized Raster Graphics (ADRG) image data set. ADRG is compressed and transformed into CAC via vector
quantization and color compression techniques. The Map Data Formatting Facility (MDFF) of the Naval Research
Laboratory, Stennis Space Center, MS (NRLSSC), produced the CAC library from April 1989 until September 1995,
when NRLSSC transitioned the CAC Production System to NIMA.

This port is a programmer's reference for accessing the CAC library via NRL-developed CAC Access Software,
which is a user-callable suite of utility programs. The CAC Access Software was written in ANSI C and is currently
running under the following operating systems: Open VMS, Unix, MS-DOS, Windows 3.1, Windows 95, and Macintosh.

14. SUBJECT TERMS

digital maps, optical storage, data bases, data compression, aeronautical charts,
mission planning

15. NUMBER OF PAGES

32

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Compressed Aeronautical Chart Access Software
Perry B. Wischow and Maura C. Lohrenz

Contents

Introduction 1

CAC Access Software 3

High-Level Access Routines 3

Low-Level Access Routines 4

Miscellaneous Access Routines 6

Acknowledgements 7

References 7

Appendix A: Entry Point Descriptions for High-Level Access Routines 8

Appendix B: Entry Point Descriptions for Low-Level Access Routines 11

Appendix C: Entry Point Descriptions for Miscellaneous Access Routines 23

Appendix D: High Level Function Calling Order 26

Introduction

Scale Chart Series

1 5M Global Navigation Chart (GNC)
1 2M Jet Navigation Chart (JNC)

1 1M Operational Navigation Chart (ONC)
1 500k Tactical Pilotage Chart (TPC)
1 250k Joint Operational Graphics (JOG)

1 100k Topographic Line Map (TLM) -100
1 50k TLM-50

The Compressed Aeronautical Chart (CAC) database is a global library of compressed, scanned,
aeronautical charts that support Navy and Marine Corps aircraft moving-map displays and
mission planning systems. The source for the CAC library is the National Imagery and Mapping
Agency (NIMA) standard ARC (equal Arc-second Raster Chart) Digitized Raster Graphics
(ADRG) image data set. ADRG is compressed and transformed into CAC via vector
quantization and color compression techniques. The Map Data Formatting Facility (MDFF) of
the Naval Research Laboratory, Stennis Space Center, MS (NRLSSC), produced the CAC library
from April, 1989, until September, 1995,
when NRLSSC transitioned the CAC Table 1. Available CAC scales and chart series
Production System to NIMA.

NIMA distributes CAC installments on
Compact Disk Read-Only Memory
(CDROM). Each CDROM contains data at
one of seven available chart scales, from
1:5M (M=million) to 1:50k (k=thousand), as
listed in table 1. As of 1995, there were 34
CDROMs in the CAC library (table 3). For a
more recent listing, the reader is referred to
NIMA Customer Support.

CAC data is structured according to the
Tessellated Spheroid (TS) map projection
system. TS divides the world into five zones
(table 2). Each zone is divided into rows and
columns of segments, and each segment
represents approximately 2 in x 2 in of paper
chart. The geographic coverage of a segment
is dependent on the chart scale and the zone in
which the segment is located. Lohrenz, et al.
(1993) describes the TS projection system in
more detail, and Lohrenz and Ryan (1990) documents the CAC file structure. The reader is
advised to become familiar with these reports prior to using the CAC Access Software.

This report is a programmer's reference for accessing the CAC library via NRL-developed CAC
Access Software, which is a user-callable suite of utility programs. The CAC Access Software
was written in ANSI C and is currently running under the following operating systems:
OpenVMS, Unix, MS-DOS, Windows 3.1, Windows 95 and Macintosh. Appendices A, B, and
C of this report contain the entry point descriptions for the High-Level, Low-Level and
Miscellaneous Access Routines, respectively. Appendix D contains the High-Level Function
Calling Order.

Table 2. TS geographic zones

Zone Zone name Southern Northern
ID latitude latitude

0 South Polar 90.00 S 51.69 S
1 S. Temperate 51.69 S 31.38 S
2 Equatorial 31.38 S 31.38 N
3 N. Temperate 31.38 N 51.69N
4 North Polar 51.69 N 90.00 N

Table 3. CAC library installments as of September, 1995.

MDFF Library* DMA Stock* ed. Geographic Coverage

CD-1995-A-MAP6-00033 ACNxxGNCxxOI

GNC(1:5M scale)

JNC(1:2M scale)
Worldwide coverage

CD-1991-B-MAP5-10006

CD-1992-A-MAP5-00008
ACNxxJNCxxOI
ACNxxJNCxx02

CD-1994-A-MAP4-00032
CD-1991-A-MAP4-00010

CD-1994-A-MAP4-00031

CD-1994-A-MAP4-00030
CD-1994-A-MAP4-00029

ONC (1:1,000,000 scale)

ACNxxONCxxOI
ACNxxONCxx02

ACNxxONCxx03
ACNxxONCxxCM

ACNxxONCxx05

Eurasia

N/S Am., Greenland, Iceland. Arctic O.
India, Indonesia, S.Pacific
Africa, Saudi Arabia

S.America, Australia, So. Pacific

CD-1991-A-MAP2-10007

CD-1992-A-MAP2-00009
CD-1993-A-MAP2-00016
CD-1993-A-MAP2-00017

CD-1993-A-MAP2-00018
CD-1993-A-MAP2-00019

CD-1993-A-MAP2-00020
CD-1993-A-MAP2-00022

CD-1993-A-MAP2-00023
CD-1993-A-MAP2-00024

CD-1994-A-MAP2-00026

JOG (1:250,000 scale)

ACNxx1501A09

ACNxx1501A10
ACNxx1501A16
ACNxx1501A2021
ACNxx1501A27

ACNxx1501A12
ACNxx1501A19
ACNxx1501A23

ACNxx1501A13
ACNxx1501A22
ACNxx1501A04

CD-1993-A-MAP2-00027

CD-1994-A-MAP2-00028
ACNxx1501A08
ACNxx1501A14

Western U.S.

Eastern U.S.
Sea of Japan
S. China Sea

Somalia/Ethiopia

Western Mediterranean
Saudi Arabia
Caribbean

Black Sea & Caspian Sea
Central America
U.K. & Baltic
Alaska

Afghanistan & NE Iran

CD-1995-C-MAP3-10001
CD-1991-B-MAP3-10002
CD-1991-A-MAP3-10003
CD-1991-A-MAP3-10004
CD-1991-A-MAP3-10005

CD-1992-A-MAP3-00011
CD-1992-A-MAP3-00012

CD-1992-A-MAP3-00013
CD-1992-A-MAP3-00014
CD-1992-A-MAP3-00015
CD-1993-A-MAP3-00021
CD-1993-A-MAP3-00025

TPC (1:500,000 scale)

ACNxxTPCxx0710
ACNxxTPCxx0309A
ACNxxTPCxx0512A
ACNxxTPCxx0506

ACNxxTPCxx0208A

ACNxxTPCxx0411A
ACNxxTPCxx0304
ACNxxTPCxx0405
ACNxxTPCxx1216
ACNxxTPCxx1014
ACNxxTPCxx0809
ACNxxTPCxx0915

Update of U.S., Caribbean, and Panama
Update of Desert Storm
W. Pacific Rim & Hawaii

No. Pacific (incl. Alaska & NE USSR)

Med., Europe, Scandinavia, Iceland
India and China

W. Russia and E. Mongolia
Siberia

Australia, E. Indonesia
S. America
N. Central Africa

Date

09/95

N/S Am., Greenland, Australia, USSR 10/91
Europe, USSR, Africa, China, Japan 03/92

9/94

08/92

08/94

07/94

05/94

11/91
04/92
03/93
03/93

04/93
05/93
05/93
07/93

09/93
09/93
02/94

02/94
05/94

09/95
06/91

03/91
04/91
06/91

10/92
11/92
01/93
01/93
01/93
07/93

Southern Africa and Madagascar 10/93

CAC Access Software

The CAC Access Software is made up of twelve files, including four C programs (*.c) and eight
include files (*.h), as listed in table 3. The CAC Access Software is designed to allow a
programmer both high-level and, if necessary, low-level access to a CAC CDROM. The high-
level routines will be sufficient for most applications, but a user may require low-level access for
more advanced applications that manipulate the image data.

Table 3. CAC Access Software files.

Programs Description Support files

cac_hlev.c j High level CAC access routines

cacjlev.c 1 Low level CAC access routines

cac_misc.c Routines to access non-image CAC
data files (e.g., audit trail files)

C language structures and definitions;
required by all four high-level programs

areadrc.h,
areasorc.h,
cd_header.h,
dr_header.h,
sg_header.h,
pa.h

cacjnc.h

Definitions for TS projection system;
required by all four high-level programs

m4_const.h

High-Level Access Routines

The high-level CAC access routines, which are contained in the file cac_hlev.c, consist of
four entry points: cacjnit, cacjnq_palette, cac_get_ll, and cac_get_rc. These routines initialize
the software, read the appropriate color palette, and retrieve the compressed CAC data for either
a specific geographic point (latitude and longitude) or segment (row and column). The high-
level routines will suffice for most user applications, such as displaying CAC data. Examples of
the recommended calling sequences for these high-level routines are provided in the files
main_rc. c, and main_ll. c (listed in Appendix D). Appendix A documents the high-level
routines in detail. They and listed here in the intended calling sequence:

♦ cacjnit

Initializes the CAC retrieval software by allocating the necessary, memory for segment
buffering, reading the cd_id.dat and cd_covrg. dat files from the ID directory on the
specified device, and initializing the internal CAC data structures based on the contents of the
cd_id. dat and cd_covrg. dat files.

♦ cac_inq_palette
Reads and returns the "day", "night" or "mono" color palette that corresponds to the retrieved
CAC segment data. Each CAC color palette file includes three separate palettes: the day
palette is appropriate for daytime flight, the night palette is used for nighttime flight, and the
mono palette uses only gray shades. See Lohrenz, et al., for more information about CAC
color palettes.

♦ cac_get_ll

Retrieves the pixel value specified by latitude and longitude. Also retrieves the entire
decompressed segment, if required. sieves me entire

♦ cac_get_rc

Retrieves the entire decompressed segment specified by a TS row, column and zone.

Both cacj>et_ll and cacj>et_rc return the palette identifier for the color palette reauired to
display the data. If the user requests an invalid latitude and longitude coo"^cTtet U
or an invalid row and column from cachet_rc the function will return an error state "

Low-Level Access Routines

The low-level CAC access routines, which are contained in the file cac llev c consist of ?\
entry points. These low-level routines are used by the high-level sofWTpre'sen^ itn
previous section In addition, programmers that need to manipulate CAC data faÄ££

£l Tev TT^ ,0W-!T'aCCeSS r°UtineS- ***** B d—ts m^e routes n detal. They are listed here in alphabetical order, since the calling sequence may varv between
applications. All floating point numbers are "double" in C. ^

♦ cacjree

^ITT? ^ ^ all0Cated^ ** low"level ^cess routines. This function is called by
the high-level routine cacjnit to free memory associated with the buffering of segment data.

♦ decodekey

^«ulJl^™^ ftS r°W "* COlUmn comP°nents- A TS keyname is an encoded
form of the TS row and column and is used to generate the filename for the TS segment of
mterest (see Lohrenz^ et al., 1993, for more information about TS keynames and filenames)
The mverse function is encodekey. "icndmes;.

♦ decompress segment

Reads the compressed CAC segment and its codebook, then decompresses the segment.
♦ doubleJosi

Converts a floating-point number to a scaled integer. (Note: this function reduces the
precision of the data). The inverse function is sijojouble.

♦ encodekey

decode"klyCSment "*"""^ "* ^"^ nnnbcr ^ * keyname- ^ inverse action is

> eq2pol

Converts equatorial zone latitude and longitude coordinates into polar zone latitude and
longitude coordinates (see Lohrenz, et al., 1993, for more information about TS polar and
non-polar coordinate systems). The inverse function is poüeq.

*■ get decompressed_pixel

™tS ^ Spedfd ^Xd fr0m a ^Pressed segment without decompressing the entire
segment. This is done by computing the location of the compressed data byte in a two-
dimensional array of compressed data bytes, given the pixel's x and y coordinates.

" geijsegmentjiame

1 latlon_calc

Converts a segment's row and column values to a latitude anA i« •♦. J
zone specification is required for the «JÄÄ^S** J1^8

is rc_calc. s overlap areas. The inverse function

the size in rows and columns of the legend image itself. (} UfferS ^
poUeq

ääS: Ar.iA.sr-to ™ -«— -
re co/c

=-Ä'=siÄ-„-t-;s
read_cd_covrg

♦

Reads the cd_covrg.dat file from the ID directory on the CAC CDROTvf n,

#CD-1991-A-MAP3-10004. ™*^£^^'^™^?^
PA and zone number associations for all PAP T~ f '• cac-llev- c, contains the
The cd_id.dat ^t "
cd_covrg.dat file. C read_cd_id) to correctly process the

• readedjd

Reads the cd_id. dat file from the ID directory on the CAC CDROM.

read_compressed_segment
Reads the compressed segment and its codebook and buffer* th™ ,«t« •
The number of segments that can be buffered is^onttd olTh " T T^
high-level routine a*c zmY R„flWiBn \T controlled by the argument passed to the
»^^W^M^ffim8 ** S£gmentS redUC6S fte^head involved in

read_palette

Reads and returns the ■■day", "nigh," or "mono" coior paiehe f„r the retrieved CAC segment

read_entire_palette

♦ read_pa_coverage

Reads the scaled integer latitude and longitude coordinates from the current PA's
coverage. dat file, and returns them as floating-point numbers.

♦ remap_palette

Remaps a CAC color palette (240 entries) to an algebraic palette (216 entries) to allow the
CAC data to be displayed without color flicker. The color flicker is caused by an application
using put tbe entire systems color palette. The result returned is an array of indices that point
to the algebraic color that is closest to the CAC palette color specified.

♦ sijconvert

Converts a latitude or longitude value from an ASCII string to a scaled integer. The format of
the string is SDDDMMSS.SS where:

S = sign of the latitude or longitude (+ or -; must be present in the string)-
DDD = degree portion (000 - 090 for latitude, or 000 -180 for longitude)- '
MM = minutes portion (00 - 59);
SS. SS = seconds portion (00.00 - 59.99).

♦ sijo_double

Converts a scaled integer to a floating-point number. The inverse function is double_to_si.
♦ spdec

Decompresses a CAC compressed segment. Due to the peculiarities of MSDOS, this routine
has two different modes (one for MSDOS, and one for VMS and Unix).

Miscellaneous Access Routines

The miscellaneous CAC access routines, which are contained in the file cac_misc c consist
of five entry points. These routines are used to access the audit trail data on a CAC CDROM

^f1!1 f* provide? a Path back t0 *e original paper charts used to create the ADRG
™09

F" m0re lT?°™fon about SP^10 ADRG files referenced in this section, refer to
MMA (1989). Appendix C documents these routines in more detail.

♦ readjareadrc

Reads the specified areadrc. dat file. This file contains a list of the CAC CDROM path
names of the Distribution Rectangle (DR) files for each ADRG source CDROM in a
particular scale and zone. This list can be used to locate the ADRG DR information for a
particular area of the CAC CDROM.

♦ readjxreasorc

Reads the specified areasorc. dat file. This file contains a list of the CAC CDROM path
names of the Source Graphic files for each DR from a source ADRG CDROM in a particular
scale and zone. This list can be used to locate the ADRG source information for a particular
area of the CAC CDROM. v

♦ read_cdheader

Reads the specified CD header.dat file. This file contains various information about a
specific ADRG source CDROM.

♦ read_drheader

Reads the specified DR header. dat file. This file contains information about a specific
DR for an ADRG source CDROM.

♦ read_sgheader

Reads the specified sgghed.dat file. The gg in the filename is the source graphics
number (01 - 99). The Source Graphics file contains information about the original paper
chart that was scanned into the ADRG CDROM.

Acknowledgements

This work was funded by the National Imagery and Mapping Agency (NIMA). The authors
thank the program managers at NIMA (Richard Glass and Pat Corkery) for supporting this
project. We also thank our fellow MDFF team members at NRLSSC for their hard work and
dedication to the CAC Processing System and the original CAC library: Marlin Gendron,
Michelle Mehaffey, Stephanie Myrick, and Michael Trenchard.

References

Lohrenz, Maura C, M.E. Trenchard, S.A. Myrick, P.B. Wischow, L.M. Riedlinger (1993). The
Navy Tessellated Spheroid Map Projection System: A Comprehensive Definition
NRL/FR/7441—92-9408. Naval Research Laboratory, Stennis Space Center, MS. August.

Lohrenz Maura C, J.E. Ryan (1990). The Navy Standard Compressed Aeronautical Chart
Database. NOARL Report 8. Naval Research Laboratory, Stennis Space Center, MS. July.

National Imagery and Mapping Agency (1989). Product Specifications for ARC Digitized
Raster Graphics (ADRG), 1st edition. DMA Report PS/2DF/100, April.

Appendix A: Entry Point Descriptions for High-Level Access
Routines

Note: byte is typedefed as unsigned char.

cac init
 9

cac_inq_palette

caceet 11
-* ~ 10

cac_get_rc

cac init

short cacinit (char cac_device [],
int numjbuffers)

cac_device: Name of device that CAC CDROM is loaded on.
(char[], passed)

numjbuffers: Number of segments that can be buffered at a time,
(int, passed)

Returns: 1
-1
-2
-3

Normal.
Error reading CD_ID.DAT.
Error reading CD_COVRG.DAT.
Error: CDROM is not a valid CAC CDROM.

cac inq palette

short cacinqjpalette {char type,
short palid,
short *size,
byte red [],
byte green [],
byte blue [])

O^e: Type of palette to load (DAY, NIGHT, or MONO)
(char, passed)

palid: Palette identification. This is a four digit number identifying the color palette
to use for the selected segment,
(int, passed)

size: Size of the color palette returned,
(short *, returned)

red: Array of size size containing the RED component of the color palette,
(byte [], returned)

green: Array of size size containing the GREEN component of the color palette,
(byte [], returned)

blue: Array of size size containing the BLUE component of the color palette,
(byte [], returned)

Returns: 1
-1
-2

Normal.
Error opening PALETTE.DAT file.
Error reading PALETTE.DAT file.

cacjgetJU

short cacjget_ll{ double Ion,
double lat,
short *palid,
short *color)

Ion: Longitude of requested pixel,
(double, passed)

lat: Latitude of requested pixel,
(double, passed)

palid: Palette identification of pixel at the specified lat and Ion.
(short *, returned)

color: Pixel value at specified lat and Ion. This is the index into the color palette,
(short *, returned)

Returns: 1: Normal
-1: Error: specified {lat, Ion) point does not fall within bounds specified by

CD_COVRG.DAT file. I.e., the specified data is not on the CDROM.

cacjgetrc

short cac_get_rc (long row,
long col,
short mapzone,
short *palid)

row: Row of requested segment,
(long, passed)

col: Column of requested segment,
(long, passed)

map_zone: TS map zone that the requested segment is in. This is used to allow specifying
segments in zone overlap areas,
(short, passed)

palid: Palette identification of segment at row/col.
(short *, returned)

Returns: 1
-1
-2

Normal
Error: specified map zone is not on this CDROM.
Error: specified segment at row/col is not on this CDROM.

10

Appendix B: Entry Point Descriptions for Low-Level Access Routines

cacfree 12

decodekey ■, ^

decompress_segment 19

double_to_si j?

encode_key ,^

eq2pol ,o

get_decompressed_pixel 14

get_segment_name 24

latloncalc ,<-

load_legend_data 26

pol2eq 17

rccalc 17

read_cd_covrg 2»

read_cd_id 2»

read_compressed_segment jo

read_pa_coverage 29

read_palette 2n

remapjpalette 2n

si_convert 21

si_to_double • 2i

spdec 22

11

cac^free
void cac_Jree (void)

Returns: None.

decodekey

void decodekey (char keyname fj,
long *row,
long *col)

keyname: Keyname to decode,
(char [], passed)

row: Row number to encode,
(long *, returned)

col: Column number to encode,
(long *, returned)

Returns: None.

decompresssegment

short decompresssegment (char pa_path [],
unsigned char *decomp_seg)

pa_path: Complete file specification of CAC segment file to decompress,
(char [], passed)

decompseg: Pointer to array containing the decompressed segment data,
(unsigned char *, returned)

Returns: 1: Normal
-1: Error reading the compressed segment file.

double_to_si

long doubletosi (double value)

value: Double precision number to convert to a Scaled integer,
(double, passed)

Returns: Encoded scaled integer as a signed long.

12

encode_key

void encodekey (long *row,
long *col,
char keyname [])

row: Row number to encode,
(long *, passed)

col: Column number to encode,
(long *, passed)

keyname: Resultant encoded keyname,
(char [], returned)

Returns: None.

eqlpol

void eq2pol (double *latin,
double *longin,
double Hatout,
double *longout,
short *zone)

latin: Equatorial latitude to convert,
(double *, passed)

longin: Equatorial longitude to convert,
(double *, passed)

latout: Polar latitude.
(double *, returned)

longout: Polar longitude.
(double *, returned)

zone: Polar zone to use in the conversion,
(short *, passed)

Returns: None.

13

get_decompressed_pixel

short get_decompressed_pixel (short y,
short x)

y: Y coordinate of a pixel in the compressed segment,
(short, passed)

x: X coordinate of a pixel in the compressed segment,
(short, passed)

Returns: Short integer corresponding to the X and Y coordinates of the requested pixel.

getjsegmentname

void getsegmentname (char pa_path [],
long row,
long col,
short zone,
char seg_path [])

pa_path: Path to the palette area subdirectory,
(char [], passed)
Note the "." character at the end of VMS path names, and the "/ " or " \" in
Unix or MS-DOS filenames. The following are sample paths to the same
palette area subdirectory on VMS, Unix, and MS-DOS systems:

VMS: CDROM:[MAP3]PA012901.
Unix: /cdrom/map3/pa012901/
MSDOS: D:\map3\pa012901\

row: Row number of segment to decompress,
(long, passed)

col: Column number of segment to decompress,
(long, passed)

zone: Tesselated Sphere zone number cooresponding \opa_path.
(short, passed)

seg_path: Complete path specification for requested segment.
(char [], returned)
E.g., VMS: CDROM:[MAP3.PA012901.R000015] 12345678.214

Unix: /cdrom/map3/pa012901/r000015/12345678.214
MSDOS: D:\map3\pa012901\r000015\12345678.214

Returns: None.

14

lotion calc

void latlon_calc (short *zone,
short *scale,
long *row,
long *col,
double *lat,
double *lon)

zone: Zone to use in the conversion to latitude/longitude,
(short *, passed)

scale: Scale to use in the conversion to latitude/longitude,
(short *, passed)

row: Tesselated sphere row number to convert,
(long *,passed)

col: Tesselated sphere column number to convert,
(long *,passed)

lat: Latitude based on scale, zone, row and column,
(double *, returned)

Ion: Longitude based on scale, zone, row and column,
(double *, returned)

Returns: None.

15

loadlegendjdata

void loadlegendjdata (char legendjpath [],
unsigned char **legend_ptr,
unsigned char rbuffj,
unsigned char gbuffj,
unsigned char bbuffj,
unsigned long *legend_x,
unsigned long *legend_y)

legendjpath: File specification of the directory containing the legend data,
(char [], passed)

legendjptr: Pointer to the beginning of the array containing the legend image data,
(unsigned char **, returned)

rbuf. Red component of the legend image's palette,
(unsigned char [], returned)

gbuf. Blue component of the legend image's palette,
(unsigned char [], returned)

bbuf. Green component of the legend image's palette,
(unsigned char [], returned)

legendjc: Size of the legend image in the "x" direction (columns),
(unsigned long *, returned)

legend_y: Size of the legend image in the "y" direction (rows),
(unsigned long *, returned)

Returns: 1: Normal
-1: Error opening legend header file.
-2: Error reading legend header file.
-3: Error opening legend image file.
-4: Error reading legend image file.

16

pol2eq

void pol2eq (double *latin,
double *longin,
double *latout,
double *longout)

latin: Polar latitude to convert,
(double *, passed)

longin: Polar longitude to convert,
(double *, passed)

latout: Equatorial latitude,
(double *, returned)

longout: Equatorial longitude,
(double *, returned)

Returns: None.

re calc

void rc_calc (double *lat,
double *lon,
short *scale,
short *zone,
long *row,
long *col)

lot: Latitude to convert,
(double *, passed)

Ion: Longitude to convert,
(double *, passed)

scale: Scale to use in the conversion to row/column,
(short *, passed)

zone: Zone to use in the conversion to row/column,
(short *, passed)

col: Tesselated sphere column number based on specified scale and zone,
(long *,returned)

row: Tesselated sphere row number based on specified scale and zone,
(long *,returned)

Returns: None

17

read_cd_covrg

short readcdcovrg (char path[],
char pa_nums[MAX_PAS][8],
short *num_pas,
double pa_latlon[MAX_PAS][4],
char pa_zones[MAX_PAS])

path: Complete path specification to the CDROM's CD_COVRG.DAT file,
(char [], passed)

pajiums: Two-dimensional array of palette area names from the CD_COVRG.DAT file.
Each palette area name is eight bytes. The maximum number of possible
palette areas on one CDROM is MAX_PAS (see CACJNC.H).
(char [][8], returned)

num_pas: The number of palette areas on the CDROM.
(short *, returned)

pajatlon: Two dimensional array of approximate coverages of each palette area on the
CDROM. The order of the latitude/longitude data in the array is as follows:
[*][0]= West longitude
[*][1]= East longitude
[*][2]= South latitude
[*][3]= North latitude
(double [][4], returned)

pazones: Array of TS zone numbers corresponding to panums above,
(char [], returned)

Returns: 1: Normal
-1: Error opening CD_COVRG.DAT file.
-2: Error reading the number of palette areas from CD_COVRG.DAT file.
-3: Error reading a palette area name from CD_COVRG.DAT file.
-4: Error reading a palette area lat/lon set from CD_COVRG.DAT file.

read cd id

short readcdid (char pathfj,
char datafj)

path: Complete path specification to the CDROMs CD_ID.DAT file,
(char [], passed)

data: Contents of specified CD_ID.DAT file,
(char [], returned, requires twenty bytes)

Returns: 1: Normal
-1: Error opening CD_ID.DAT file.
-2: Error reading CD_ID.DAT file .

18

readcompressedsegment

short readcompressedsegment (char pa_path[],
unsigned char *codebook,
unsigned char *compseg)

pa_path: Complete file specification of CAC segment file of interest,
(char [], passed)

codebook: Codebook to decompress segment (codebook requires 1024 bytes of memory),
(unsigned char *, returned)

compseg: Compressed segment to be decompressed (compressed segment requires 16384
bytes of memory),
(unsigned char *, returned)

Returns: 1: Normal
-1: Error opening compressed CAC segment file.
-2: Error reading compressed CAC segment codebook.
-3: Error reading compressed CAC segment data.

read_pa_coverage

short read_pa_coverage (char namefj,
double *minlon,
double *maxlon,
double *minlat,
double *maxlaf)

name: PA coverage filename (full path).
(char [], passed)
E.g., VMS: CDROM:[MAP3.PA012901]COVERAGE.DAT

Unix: /cdrom/map3/pa012901/coverage.dat
MSDOS: D:\map3\pa012901\coverage.dat

minion: Minimum longitude coordinate,
(double *, returned)

maxlon: Maximum longitude coordinate,
(double *, returned)

minlat: Minimum latitude coordinate,
(double *, returned)

maxlat: Maximum latitude coordinate,
(double *, returned)

Returns: 1: Normal
-1: Error opening PA COVERAGE.DAT file.
-2: Error reading PA COVERAGE.DAT file .

19

read_palette

short readjpalette (char type,
char pathfj,
unsigned char redfj,
unsigned char greenfj,
unsigned char bluefj)

type: Color palette type (day, night, mono),
(char, passed)

path: Complete file specification of CAC color palette,
(char [], passed)

red: Red component of color palette (requires at least 256 bytes),
(unsigned char *, returned)

green: Green component of color palette (requires at least 256 bytes),
(unsigned char *, returned)

blue: Blue component of color palette (requires at least 256 bytes),
(unsigned char *, returned)

Returns: 1: Normal
-1: Error opening CAC color palette.
-2: Error reading CAC color palette.

remap_palette

unsigned char *remap_palette (unsigned char redfj,
unsigned char greenfj,
unsigned char bluefj)

red: Red component of color palette to remap,
(unsigned char *, returned)

green: Green component of color palette to remap,
(unsigned char *, returned)

blue: Blue component of color palette to remap,
(unsigned char *, returned)

Returns: Pointer to an array containing indices that represent the mapping of the
specified CAC color map entries to the nearest color in an algebraic color map.

20

si convert

long siconvert (char value[],
short type)

value: Character string of latitude or longitude to convert to a scaled integer number.
The sign of the latitude and longitude value (i.e.,"+" or"-") must be present,
(char [], passed)

type: Denotes whether value is a longitude or latitude (0 = longitude, 1 = latitude).
(enum{longitude,latitude}, passed)

Returns: The scaled integer of value is returned as a signed long.

sitodouble

double sitodouble (long si)

si: Scaled integer to be converted to a double,
(long, passed)

Returns: Double equivalent of decoded scaled integer.

21

spdec

VMS and Unix usage:

void spdec (unsigned char inptr[16384],
unsigned char spcbptr[16384],
unsigned char outptr[65536])

inptr: Compressed segment (assumed to be 16384 bytes) to be decompressed,
(unsigned char [], passed)

spcbptr: Codebook (assumed to be 1024 bytes) to decompress the segment,
(unsigned char [], passed)

outptr: Decompressed segment (requires 65536 bytes),
(unsigned char [], returned)

Returns: None.

MSDOS usage:

void spdec (unsigned char far inptr[16384],
unsigned char far spcbptr[16384],
unsigned char far outptr[65536])

inptr: Compressed segment (assumed to be 16384 bytes) to be decompressed,
(unsigned char far [], passed)

spcbptr: Codebook (assumed to be 1024 bytes) to decompress the segment,
(unsigned char far [], passed)

outptr: Decompressed segment (requires 65536 bytes),
(unsigned char far [], returned)

Returns: None.

22

Appendix C: Entry Point Descriptions for Miscellaneous Access
Routines

readareadrc 24

readareasorc 24

readcdheader 25

readdrheader '. 25

read_sgheader 25

23

readjareadrc

Must include file areadrc. h.

short readareadrc (char path[],
struct areadrc *areadrc,
short *numpas)

path: Complete file specification of the AREADRC.DAT file,
(char [], passed)

areadrc: Structure to contain data read from AREADRC.DAT file,
(struct areadrc *, returned)

numpas: Number of PA areas (zones) in the AREADRC.DAT file,
(short *, returned)

Returns: 1: Normal
-1: Error opening AREADRC.DAT file.
-2: Error reading AREADRC.DAT file.

readareasorc

Must include file areasorc. h.

short readareasorc (char pathfj,
struct areasorc *areasorc,
short *numpas)

path: Complete file specification of the AREASORC.DAT file,
(char [], passed)

areasorc: Structure to contain data read from AREASORC.DAT file,
(struct areasorc *, returned)

numpas: Number of PA areas (zones) in the AREASORC.DAT file,
(short *, returned)

Returns: 1: Normal
-1: Error opening AREASORC.DAT file.
-2: Error reading AREASORC.DAT file.

24

readcdheader (Must include file cd_header. h).

short readcdheader (char path[],
struct cdheader *cdheader,
short *numpas)

path: Complete file specification for the CD HEADER.DAT file,
(char [], passed)

cdheader: Structure to contain data read from CD HEADER.DAT file,
(struct cdheader *, returned)

Returns: 1: Normal
-1: Error opening CD HEADER.DAT file.
-2: Error reading CD HEADER.DAT file.

readdrheader (Must include file dr_header. h).

short readdrheader (char path[],
struct drheader *drheader,
short *numpas)

path: Complete file specification of the DR HEADER.DAT file,
(char [], passed)

drheader. Structure to contain data read from DR HEADER.DAT file,
(struct drheader *, returned)

Returns: 1: Normal
-1: Error opening DR HEADER.DAT file.
2: Error reading DR HEADER.DAT file.

readsgheader (Must include file sg_header. h).

short readsgheader (char pathfj,
struct sgheader *sgheader,
short *numpas)

path: Complete file specification of the SG HEADER.DAT file,
(char [], passed)

sgheader: Structure to contain data read from SG HEADER.DAT file,
(struct sgheader *, returned)

Returns: 1: Normal
-1: Error opening SG HEADER.DAT file.
-2: Error reading SG HEADER.DAT file .

25

Appendix D: High Level Function Calling Order

main_ll.c 27

main rc.c 29

26

main_ll.c

#include "cac_inc.h"
#include "m4_const.h"

int main (unsigned int arge, char *argv[])

{
short size, i;

int status;

double lat,lon;

short color;

short palid, prev_palid=0;

char debug=0;

static unsigned char decomp_seg[256][256]; /* Decompressed CAC segment */

unsigned char red[256], /* Selected color palette */
green[256],
blue[256];

/* argv[l]: CDROM device name */
/* argv[2]: Number of segments to buffer */

cac_init (argv[l], atoi(argv[2]));

while (TRUE)

{
printf("Lat,Lon (separated by a comma):");

scanf ("%lf,%lf, &lat,&lon);

status = cac_get_ll (Ion, lat, &palid, &color);

if (status = 1)

{
printf ("Lat: %6.21f Lon: %7.21f\n", lat, Ion);

printf ("Row: %6d Col: %6d\n", cac.row, cac.col);

printf (" Palette ID: %d\n", palid);

printf ("Pixel color: %d\n", color);

if (prev_palid != palid)

{
status = cac_inq_palette (day, palid, &size, red, green, blue);

printf ("Palette loaded for PA#: %d\n",palid);

prevjpalid = palid;

27

if(debug)

for (i=0; i<size; i++)

printf("%x %x %x\n", red[i],green[i],blue[i]);

}

}
else

printf ("Position NOT found on CAC.An");

} /* End "while (TRUE)" */

}

28

mainjrcc

#include "cac_inc.h"

#include "m4_const.h"

int main (unsigned int arge, char *argv[])

{
short size, i;

unsigned char red[256], /* Selected color palette */
green[256],
blue[256];

int status;

long row,col;

short color, map_zone;

short palid, prev_palid=0;

char debug=0;

static unsigned char decomp_seg[256][256]; /* Decompressed CAC segment */

/* argv[l]: CDROM device name */
/* argv[2]: Number of segments to buffer */

cac_init (argv[l], atoi(argv[2]));

while (TRUE)

{
printf("Row,Column,Zone (separated by commas):");

scanf ("%ld,%ld,%d", &row, &col, &map_zone);

status = cac_get_rc (row, col, map_zone, &palid, (unsigned char *)decomp_seg);

if (status)

{
printf ("Row: %61d Col: %61d\n", row, col);

printf (" Palette ID: %d\n", palid);

printf (" cac.row: %61d cac.col: %61d\n", cac.row, cac.col);

if (prev_palid != palid)

{
status = cac_inq_palette (day, palid, &size, red, green, blue);

printf ("Palette loaded for PA#: %d\n",palid);

prevjpalid = palid;

29

if(debug)
for (i=0;i<size;i++)

printf ("%x %x %x\n",red[i],green[i],blue[i]);

}

}
else

printf ("Position NOT found on CAC.An");

} /* End "while (TRUE)'* */

}

30

